UNIVERSITÄT ZU LÜBECK

NMR Investigation into the Dynamics of the Human Blood Group A and B Glycosyltransferases

<u>Sophie Weißbach¹</u>, Thomas Peters¹

¹University of Luebeck, Institute of Chemistry, Ratzeburger Allee 160, 23562 Luebeck, Germany. E-mail: weissbach@chemie.uni-luebeck.de

Human Blood Group ABO Glycosyltransferases

- The Human Blood Group ABO Glycosyltransferases α -1,3-N-acetylgalactosaminyltransferase (GTA) and α -1,3galactosyltransferase (GTB) are responsible for the last step of the A- and B-Antigen synthesis, respectively.
- GTA and GTB differ by only 4 amino acids which are crucial for donor specificity and differences in kinetics.

Figure 1: 70 kDa Homodimer of chimeric GTA in complex with UDP-Gal (blue), H-Disaccharide (green) and Mn²⁺ (orange). Loop regions shown in black (pdb: 2RJ7)^[1].

- They follow the retaining mechanism which is up to date not well understood^[2].
- known from crystal structures that complex • It is conformational transitions upon substrate binding take place^[1].
- NMR spectroscopy is a perfect tool to further analyze the dynamic behavior of GTA and GTB and the influence of substrate binding in different timescales.
- Different labeling schemes are applied to achieve that task.

Figure 2: Active site of with bound substrates (UDP-Gal (blue), H-Disaccharide (dark green)) and Mn²⁺ ion (orange)). Flexible internal and C-terminal loop shown in black and Ile and Met residues are shown in red and green, respectively (pdb: 2RJ7)^[1].

Dynamic Studies of GTA and GTB

Side Chain Dynamics in the Micro- to Millisecond Time Scale – **Relaxation Dispersion Experiments with Ile^{δ1}-GTA**

Backbone Dynamics in the Pico- to Nanosecond Time Scale

with cryogenic probe. GTA was saturated with 6 mM UDP donor 1 mM Hsubstrate (orange) and Disaccharide (purple).

Figure 4: Exemplary relaxation dispersion profiles of Ile residues at 283 K and 298 K with and without the respective substrates. Spectra were recorded with a constant time delay of T = 20 and v_{CPMG} values ranging from 50 to 500 Hz. $R_{2 eff}$ = (-1/T) $ln(I_{CPMG}/I_0)$. Data were analyzed with GUARDD^[3].

- Methyl groups of Ile are easy to label and lead to well resolved spectra. All 10 Ile in GTA are detectable.
- Ile side chains close to the active site (Ile123) and within the internal loop (Ile192) move mainly upon substrate binding.
- Ile192 also shows dispersion in the presence of UDP. Other Ile signals show only weak or even no dispersion. This indicates that only loop regions show dynamics in µs-ms time scale.
- GTB shows similar behavior (Poster L.L. Grimm).

Figure 7: ¹H, ¹⁵N-TROSY HSQC spectrum of ²H,¹⁵N GTA without and with 6,15 mM UDP donor substrate (91% saturation) at 500 MHz and 298 K. Arrows and corresponding tables illustrate ¹⁵N T₁, T₂ and ¹⁵N{¹H} NOE relaxation data and the influence of UDP binding exemplarily.

Table 1: ¹⁵N T₁, T₂ and ¹⁵N{¹H} NOE mean values for the main chain amides of GTA without and with UDP.

	T ₁ [ms]	T ₂ [ms]	NOE
GTA without UDP	1573,77 ± 369	58,89 ± 56,55	$0,66 \pm 0,17$
GTA with UDP	2587,88 ± 624	71,72 ± 54,47	$0,78 \pm 0,19$
Number of data points	41	28	11

- Broad distribution of relaxation data reveal wide variation in the flexibility within the protein.
- Addition of UDP increases T_1 and T_2 relaxation times. This indicates that the structure gets more rigid upon UDP binding and moves slower.
- Referring to the size of the protein only little peaks can be analyzed unambiguously. For such a large protein (70 kDa) we are at the limit of the detectability for backbone dynamics in the pico- to nanosecond time scale.

Conclusion & Outlook

Figure 5: Methyl TROSY spectrum of Met^ε-[¹H,¹³C],¹⁵N GTB in an otherwise deuterated background. 220 µM GTB in 25 mM sodium 298 K. Spectra were recorded with a constant time phosphate buffer, 5 mM MgCl₂, 1 mM 2-ME-d₆ was measured at a 500 MHz spectrometer with cryogenic probe (green). GTB was saturated with 9 mM UDP donor substrate (orange).

Figure 6: Exemplary relaxation dispersion profiles of methyl groups of Met residues at 283 K and delay of T = 20 and v_{CPMG} values ranging from 50 to 500 Hz. $R_{2,eff} = (-1/T) \ln(I_{CPMG}/I_0)$. Data analyzed with GUARDD^[3].

- Only 10 out of 11 Met signals in GTB are unambiguously detectable.
- Five Met are within an 15 Å distance to the active site so UDP binding has a major influence on the Met side chains.
- Without any ligand Met side chains show no or only weak dispersion.

[1] Alfaro, J.A. et al., J. Biol. Chem., 283 (15), 10097-108 (2010) [2] Lairson, L.L. et al., Annu Rev Biochem, 77, 521-55 (2008) [3] Foster, M.P. et al., *J Biomol NMR*, *52 (1)*, 11-22 (2012)

- **Backbone Dynamics** in the pico- to nanosecond time scale are hard to analyze due to the huge size of the protein.
- The wide range of relaxation times indicates that some parts of GTA are highly flexible and others are rather rigid.
- Methyl labeling of e.g. Ile and Met side chain is a perfect tool to investigate **Side Chain Dynamics.**
- In the micro- to millisecond time scale only the loop region of GTA in the presence of UDP is moving. Other areas probably move in a faster time scale. • It will be investigated if Met side chains confirm this result.

Acknowledgement

We thank Monica Palcic for help and support in any respect and especially for highly stimulating discussions and joint seminars. The DFG is thanked for the financial

support.

