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NMR Investigation into the Dynamics of the 

Human Blood Group A and B Glycosyltransferases

Figure 1: 70 kDa Homodimer of chimeric GTA in complex with

UDP-Gal (blue), H-Disaccharide (green) and Mn2+ (orange). Loop

regions shown in black (pdb: 2RJ7)[1].

Human Blood Group ABO Glycosyltransferases

• The Human Blood Group ABO Glycosyltransferases

α-1,3-N-acetylgalactosaminyltransferase (GTA) and α-1,3-

galactosyltransferase (GTB) are responsible for the last step

of the A- and B-Antigen synthesis, respectively.

• GTA and GTB differ by only 4 amino acids which are crucial

for donor specificity and differences in kinetics.

• They follow the retaining mechanism which is up to date not

well understood[2].

• It is known from crystal structures that complex

conformational transitions upon substrate binding take

place[1].

• NMR spectroscopy is a perfect tool to further analyze the

dynamic behavior of GTA and GTB and the influence of

substrate binding in different timescales.

• Different labeling schemes are applied to achieve that task.

Backbone Dynamics in the Pico- to Nanosecond Time Scale

Dynamic Studies of GTA and GTB

Side Chain Dynamics in the Micro- to Millisecond Time Scale –

Relaxation Dispersion Experiments with Iled1-GTA
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Conclusion & Outlook
• Backbone Dynamics in the pico- to nanosecond time scale are hard to analyze due

to the huge size of the protein.

• The wide range of relaxation times indicates that some parts of GTA are highly

flexible and others are rather rigid.

• Methyl labeling of e.g. Ile and Met side chain is a perfect tool to investigate Side

Chain Dynamics.

• In the micro- to millisecond time scale only the loop region of GTA in the presence

of UDP is moving. Other areas probably move in a faster time scale.

• It will be investigated if Met side chains confirm this result.

T1 [ms] T2 [ms] NOE

GTA without UDP 1573,77 ± 369 58,89 ± 56,55 0,66 ± 0,17

GTA with UDP 2587,88 ± 624 71,72 ± 54,47 0,78 ± 0,19

Number of data points 41 28 11
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Table 1: 15N T1, T2 and 15N{1H} NOE mean values for the main chain amides of GTA without and with

UDP.

• Broad distribution of relaxation data reveal wide variation in the flexibility within the

protein.

• Addition of UDP increases T1 and T2 relaxation times. This indicates that the

structure gets more rigid upon UDP binding and moves slower.

• Referring to the size of the protein only little peaks can be analyzed unambiguously.

For such a large protein (70 kDa) we are at the limit of the detectability for backbone

dynamics in the pico- to nanosecond time scale.

Figure 7: 1H, 15N-TROSY HSQC spectrum of 2H,15N GTA without and with 6,15 mM UDP donor

substrate (91% saturation) at 500 MHz and 298 K. Arrows and corresponding tables illustrate 15N T1,

T2 and 15N{1H} NOE relaxation data and the influence of UDP binding exemplarily.
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T1 [ms] 1744 2535

T2 [ms] 17.9 28.3

NOE 0.40 0.46

Y - UDP +UDP

T1 [ms] 1816 2631

T2 [ms] 15.2 26.2

NOE 0.70 0.77

X - UDP +UDP

T1 [ms] 625 1286

T2 [ms] 145.5 213.6

Figure 3: Methyl TROSY spectrum of

Iled1-[1H,13C],15N GTA in an otherwise

deuterated background. 75 µM protein

in 25 mM sodium phosphate buffer,

5 mM MgCl2, 1 mM 2-ME-d6 was

measured at a 500 MHz spectrometer

with cryogenic probe. GTA was

saturated with 6 mM UDP donor

substrate (orange) and 1 mM H-

Disaccharide (purple).

• Methyl groups of Ile are easy to label and lead to well resolved spectra. All 10 Ile in

GTA are detectable.

• Ile side chains close to the active site (Ile123) and within the internal loop (Ile192)

move mainly upon substrate binding.

• Ile192 also shows dispersion in the presence of UDP. Other Ile signals show only

weak or even no dispersion. This indicates that only loop regions show dynamics in

µs-ms time scale.

• GTB shows similar behavior (Poster L.L. Grimm).

Figure 2: Active site of with bound substrates (UDP-Gal (blue), H-

Disaccharide (dark green)) and Mn2+ ion (orange)). Flexible internal

and C-terminal loop shown in black and Ile and Met residues are

shown in red and green, respectively (pdb: 2RJ7)[1].
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Figure 4: Exemplary relaxation dispersion profiles of Ile

residues at 283 K and 298 K with and without the respective

substrates. Spectra were recorded with a constant time delay of

T = 20 and ʋCPMG values ranging from 50 to 500 Hz. R2,eff = (-1/T)

ln(ICPMG/I0). Data were analyzed with GUARDD[3].
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Relaxation Dispersion Experiments with Mete-GTB

• Only 10 out of 11 Met signals in GTB are unambiguously detectable.

• Five Met are within an 15 Å distance to the active site so UDP binding has a major

influence on the Met side chains.

• Without any ligand Met side chains show no or only weak dispersion.
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Figure 6: Exemplary relaxation dispersion profiles of

methyl groups of Met residues at 283 K and

298 K. Spectra were recorded with a constant time

delay of T = 20 and ʋCPMG values ranging from 50 to

500 Hz. R2,eff = (-1/T) ln(ICPMG/I0). Data analyzed with

GUARDD[3].

Figure 5: Methyl TROSY spectrum of Mete-

[1H,13C],15N GTB in an otherwise deuterated

background. 220 µM GTB in 25 mM sodium

phosphate buffer, 5 mM MgCl2, 1 mM 2-ME-d6 was

measured at a 500 MHz spectrometer with

cryogenic probe (green). GTB was saturated with

9 mM UDP donor substrate (orange).
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