

UNIVERSITÄT ZU LÜBECK

Cell-free expression of human blood group A and B glycosyltransferases

Hanne Peters, Kaja Meincke, Thies Köhli, Thomas Peters

University of Lübeck, Institute of Chemistry, Ratzeburger Allee 160, 23538 Lübeck, Germany. E-mail: hanne.peters@chemie.uni-luebeck.de

Cell-Free Protein Synthesis

Our initial NMR studies on human blood group A and B glycosyltransferases (GTA and GTB) have shown that classical assignment procedures using e.g. 3D triple resonance spectra fail. In order to allow for combinatorial labeling approaches we had to establish a cell free expression protocol instead. Fig. 1 summarizes components required for cell-free protein synthesis (T7 RNA Polymerase, S30-extract containing more than 200 proteins and ribosomes for translation, Mg²⁺ and K⁺ ions, p*IVEX* or p*ET*-vector coding for the target

Results: 50 µl Batch Reaction

Cell-free protein synthesis in 50 µl batch reactions: 30% S30-extract, 120 µg/ml T7 RNA P, 27 mM NH4OAc, 10.3 mM Mg(OAc)2, 100 mM KOAc, 100 mM Hepes/KOH pH 7.5, 250 µg/ml creatine kinase, 52 mM phosphocreatine di-Tris salt, 2 mM amino acids, 2 mM (Arg, Cys, Trp, Met, Asp, Glu)-mix, 2% PEG 8000, 1.2 mM ATP, 0.8 mM each CTP, GTP, UTP, 640 μM cAMP, 68 μM folinic acid, 180 μg/ml tRNA, 1.7 mM DTT, 20 μg/ml plasmid, 0.1 U/ml RNasin, 1x protease inhibitor. The reaction was performed in 200 µl tubes for 20 hours at 30° C and 600 rpm (highest activity of GTB after 20 hrs) [1, 2].

protein, ATP, GTP, UTP, CTP, amino acids, tRNA, Creatine kinase/phosphocreatine for energy recycling, PEG 8000 to mimic the viscosity of cytosol and more compounds and

Fig. 1: Coupled system for the cell-free protein synthesis with transcription and translation

T7 RNA Polymerase

T7 RNA P was expressed in 1 L M9-minimal medium [1] using the vector pAR1219 in BL21 (DE3). T7 RNA P has to be protected from degradation by proteases during purification. Long time storage is achieved with 100 mM NaCI and 50% glycerol at -80° C. The activity of the T7 RNA P depends strongly on Mg²⁺. 100 mM NaCl is an inhibitor of T7 RNA P and NaCl also inhibits the cell-free protein synthesis at >50 mM. We purified 32 mg (7 mg/ml) protein with a purity of T7 RNA P of 90%.

S30 - Extract

An A19 strain (RNA and amino acid stabilizing mutations) was used to prepare S30extract [1, 2] with two different media in a 10 L fermenter: 2xYTPG medium [2] and incomplete rich medium [1], a minimal medium supplemented with 0.1% NH₄Cl and 4 mM MgSO₄. Only 50% of our S30-extracts prepared in flask cultures were active. Only with a fermenter culture we got enough S30-extract for testing. Essential for an active S30extract are: a short lag-phase and generation time and fast cooling before harvesting the cell pellet.

	10 L Fermenter		2L flask culture		
Medium	2xYTPG	Minimal medium	2xYTPG	Minimal medium	
2 mM	1.2 U/ml	1.4 U/ml	0.2 U/ml	0.5 U/ml	
amino acids	1300 x10 ³ DPM	1500 x10 ³ DPM	233 x10 ³ DPM	567 x10 ³ DPM	
0 mM	48 DPM	65 DPM	138 x10 ³ DPM	150 DPM	

Tab. 2: Activity of GTB with S30-extracts from fermenter and flask cultures

Intensive dialysis seems to be sufficient to remove endogenous amino acids from S30extracts. An ultimate opinion is only possible after the first labeling and NMR experiments.

	Vector 1 pIVEX-GTB	Vector 2 pIVEV-His ₆ -TEV-GTB	
Activity assay	1 U/ml	0.3 U/ml	
Insoluble GTB	40%	70%	

Tab. 3: Vectors for GTB cell-free synthesis The GTB activity with vector 2 was measured after TEV cleavage.

Fig. 5: SDS-PAGE of GTB batch reaction mix The vectors are cause of different amounts of soluble S and insoluble P GTB. Reaction mix without plasmid and addition of GTB (20 hrs incubation). Reference: GTB

E1000

✤ 10 L fermenter 2xYTPG

- ← 10 L fermenter minimal medium
- → 2L flask culture 2xYTPG

Fig. 2: Growth curve A19 in fermenter and flask culture

	10 L fermenter		1 L flask culture	
Medium	2xYTPG	Minimal medium	2xYTPG	Minimal medium
Harvest OD ₆₀₀	3	0.54	1.2	0.6
pellet	66 g	13 g	2.5 g	0.6 g
S30-extract	26 ml	3.1 ml	0.7 ml	1 ml
Mg ²⁺ f.c.	10.3 mM	10.3 mM	15 mM	16 mM

	10 L fermenter		1 L flask culture		
Quality control (25-40 mg/ml)	2xYTPG	Minimal medium	2xYTPG	Minimal medium	
Protein Bradford/BSA	19 mg/ml	23 mg/ml	(250 mg/ml)	16 mg/ml	

Tab. 1: Quality data S30-extracts

The generation time of all cultures is 30-40 min. Important is a high protein concentration >25 mg/ml.

The batch-to-batch activity of S30-extract preparations also depends on the following steps: 1) Fast cell lysis; 2) Run-off to release endogenous mRNA from the ribosomes (45° C for 45 min., no preincubation mix, 400 mM NaCI); 3) Separation of the 30S and 50S subunits from the 70S ribosomes (not active in cell-free protein synthesis) by high speed centrifugation steps; 4) Cytosol matrix is exchanged against S30-buffer by dialysis (50 mM Tris/acetate, pH 8.2 (RT), 14 mM Mg(OAc)₂, 60 mM KOAc, 0.5 mM DTT); 5) Endogenous amino acids have to be removed completely for stable isotope labeling of proteins for NMR measurements. Several dialysis steps with buffer exchange are sufficient.

After a last centrifugation step at 30.000xg the S30-extract is shock frozen in liquid nitrogen and stored at -80° C for max. one year. 1.6

Fig. 6: Attempts to increase the amount of soluble GTB with chemical chaperons It seems GTB has folding problems in the cell-free expression, especially with vector 2. a) Purified GTB is stable during cell-free reaction and also the pH value of 7.5 of the reaction buffer Hepes/KOH is ideal. b) Only DnaK causes no insoluble GTB but low yield.

Results: 50 µl Continuous Exchange Reaction

The advantage of continuous exchange cell-free protein synthesis is continuous supply of new reagents, especially ATP, and removal of side products like phosphate, which inhibit protein synthesis. Each reaction mix contains S30-extract, T7 RNA P, plasmid, tRNA and is separated from the feeding mix via a dialysis membrane (MWCO 10 kDa). The ratio of reaction mix to feeding mix is about 1:18.

	Device 1	Device 2	Device 3	Device 4	Batch
Feeding mix	950 μl	750 μl	750 μl	950 μl	-
Reaction mix	50 µl	50 µl	50 µl	50 µl	50 µl
End volume	25 μl	40 µl	45 µl	10 µl	50 µl
GTB Activity	3.9 U/ml	3.68 U/ml	1.73 U/ml	3 U/ml	0.8 U/ml

D-tube Slide-A-Lyzer-Mini

Fig. 3: Protein concentration during S30extract preparation

From cell lysis to final S30-extract only 66 % of the total protein concentration has been retained. In any case, it is important to start with high protein concentration in the lysis.

minimal medium - 2xYTPG

Fig. 4: Mg-Titration of S30-extract

Usually the Mg-concentration is >15 mM. Probably this reflects the low protein concentration in both S30extracts.

Fig. 7: Comparison of the devices with vector 1 The self made device 2 has the highest activity of GTB with a good recovery of the reaction mix. Maybe device 4 reflects only the concentration of the reaction mixture in the membrane?

Mini Dialyzer Dialysis membrane

Fig. 8: SDS-PAGE of soluble and insoluble GTB in dependence of the device

Acknowledgments: We thank Monica Palcic for help and support in any respect and especially for highly stimulating discussions and many joint seminars. We thank Frank Bernhardt for many discussions. The DFG is thanked for financial support.

[1] Takeda & Kainosho, Methods in Molecular Biology (2012) 831: 71-84 [3] Kim & Choi, J. Biotechnol (2000) 48: 27-32 [2] Schwarz et al., Nature Protocols (2007) 2: 2945-57

IM FOCUS DAS LEBEN